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THERMOELASTIC DEFORMATION OF A COOLED METAL PLATE UNDER THE INFLUENCE 

OF A PULSE-PERIODIC RADIATION FLUX 

G. I. Rudin UDC 539.3:621.375.826 

A solution to the problem of determining the fields of stress and deformation in 
a plate under the influence of radiation flux with a Gausslan distribution is ob- 
tained. 

A common element in optical systems is a metal plate, the surface of which has a high 
coefficient of reflection as a result of processing. Under the influence of a sufficiently 
high radiation flux density on the plate, the planar reflecting surface buckles due to non- 
uniform heating. This leads to a change in the structure of the beam; in particular, defo- 
cusing occurs as a result of reflection from such a surface [i]. In addition, thermal stress 
develops in the plate. During intense heating the magnitude of this stress can exceed the 
tensile strength of the plate material, thereby inducing an irreversible structural change. 

In [2] a calculation of the thermal stress in a cooled plate under the influence of a 
pulse-periodlc radiation flux was performed within a one-dimensional approximation where the 
stress tensor components and temperature change in the direction normal to the surface of the 
plate. In [3] a relation for the temperature fields in a plate was obtained within the one- 
dimensional approximation, and an estimation of the normal deformation and stress was per- 
formed. In [4] the two-dimensional problem of stress location in a free round plate under a 
radially Gaussian distributed radiation flux density was determined. It was shown that the 
structure of the spatial distribution of the stress within the one- and two-dimensional cases 
differs significantly. In particular, it was found that in the center zone of irradiation, 
the tangential and axial components of the stress are compressing, but out of the zone of 
irradiation they are stretching. 

In the present work, in contrast to [4], the primary emphasis is the deformation of the 
plate surface induced by the thermal effect of a pulse-perlodlc radiation flux with a radial 
Gau~sian distribution. We will assume that the rear surface of the plate is fixed to a rigid 
base, and the heat transfer from it proceeds according to Newton's law. 

We will find the temperature field of a plate of constant thickness d and infinite in 
the radial direction. One of the surfaces of the plate (z = 0) is heated as a result of the 
influence of the pulse-periodic source (radiation directed along the normal to the surface), 
and the other (z = d) is cooled by means of a cooling agent with a coefficient of heat trans- 
fer h. We will assume that the intensity of the surface thermal source can be represented in 
the form 
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Q (r, t) -- Io exp (-- ar ~) f (t). 

The function f(t) gives the time dependence of the intensity of the thermal source 

1, (N--I)(-c+A)<t<(N--I)(~+A)+,, 
f ( t )=  O, (N--I)('~+A)+-~<t<N(,+A), 

(i) 

where N is the number of pulses in a series. 

We find the temperature field on the basis of the solution of the heat-transfer equation 
with appropriate boundary conditions 

OT.ot = k ( Or z 02T 1 OT OaT ) - - - + - -  ~ +  ~ , 

r Or Oz 2 , 

OT 
[ = loexp( - -ar2) f ( t ) ,  (2) 

OZ ,z~o 

__ ~ OT I = hT]~=d, T[t=o= O. 
OZ .z=d 

Applying Hankel and Laplace transforms to the heat-transfer equation and the boundary condi- 
tions leads to 

sTT + k p @ - -  k 0~'-  ~ ~ 0, 
Oz 2 

( ) __E 07 ~=o=I~ 1 p2 
..... o Z ~ exp 4a {f (t)IL' - -  ~ "  Oz z=e = hT"[~=d' 

(3) 

where T=ie-Sti'rJo(pr)T(r,. z, t)drdt ; p and s are parameterss of the Hankel and Laplace trans- 
0 0 

forms; {f(t)} L is:the Laplace transform of relation (i). As a result of Eq. (3), we obtain 

~ =  Iod exp -- {f(t)} c 
2a)~ ~ i~ (~t sh ~t + Bi ch ~) Bi 

) )T}  • chF-~-shp, c h g ~ - -  sh&+ch~ sh,t~ z , ~=: "~--t-pZd. 

(4) 

To transform from representation (4) to the original expression~ we use the theorem of 
decomposition and expansion [5]: 

T(r, z, t )=  
t 

Iok exp . pJo(pr)N~ % cos~p~ { . i e xp[ - -~ ( t - -O) l f tO)dO}dp ,  
a~d 4a ~ --d tz= 1 0 

(5) 

where ~n is a root of the characteristic equation cot ~n = ~n/Bi; 

k = ~ 
~" = 7 (r V,, r 

Using expression (i) for f(t), we compute the inner integral in (5): 

t T 

i exp [-- ~ (t -- 0)] f (8) dO = exp (-- ~,t) [I exp (~0) dO+ 
b 0 

2~C+A 3T+2A ] 
+ .[ exp(13"O)dO-+- S exp( [~ ,O)dO- t - . . . ]=~exp( - - [L , t )F , ( t ) ,  

Z+A 2 (~+A) ~ n 

(6) 

where 
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F.(t) = [exp ~,~T-- II e x p l 3 . N ( ~ + A ) - -  1 + e x p [ L , t ' e x p [ ~ . [ N x + ( N - -  1)A]. 
exp 1~,, (T -f- A) -- 1 

Taking into account (6), expression (5) takes the form 

T (r, z, t) = led exp - -  PJo (pr) ~ r _t_ p~d ~ cos~pn -~ exp( - -~ , t )  dp. 
a~ �9 ~ . = I  (7) 

We will perform a calculation of the components of transfer u, w corresponding to the 
radial and axial directions, which satisfy the following equations [6]: 

u 1 Oe 2 ( l + v )  aT 
h u - - - - +  --- = , 

r 2 1 - - 2 ~  Or 1 - - 2 v  Or 
(8) 

1 Oe 2 ( l + v )  OT 
Aw+ ~ - - ,  (9) 

1 - - 2 v  Oz 1 - - 2 v  Oz 

where e = 3u/3r + u/r + 3w/3z is the volume expansion. We represent u, w in the form 

u (r, z, t) = Iod I" exp - -  71(Pr) F.(t) exp ('_2_ f3~t) dp, 
a'~ o' = r + P~d~ ( lo) 

The unknown functions ~ (z) and r (z) satisfy the system (12), (13) which is obtained 
n n 

as a result of substitution of relations (i0) and (Ii) into (8) and (9): 

d~q~ ~- 3p dq)~ dz ~ ~ @ 4p%p~ = 8(zp 2 cos ~ d ' ( 1 2 )  

4 d2dP~ -{- 3p d%, __ p2q).,, = __ 8ap ~;'~ sin % !- .  
dz - - T  dz d - (13) 

Here it is assumed that i/(i - 2v) = 3, (i + v)/(i -2v) = 4 since for many metals o~ practical in- 
terest, v = 0.33. We differentiate (12) with respect to the variable z and combine with Eq. 
(13): 

d ~ ( d~. ! ~/ d~ + p ~ )  
dz 2 ~ dz + P ~ / - -  

O. P [-77/ 

The solution of this equation is written in the form 

d~.  _]_p~  = A~e-P2@B~ePZ, (14) 
dz 

where A and B are arbitrary constants to be determined from the boundary conditions, Sub- 
n 

stituting (14)ninto (12), we obtain 

z 1 (_A~e_p~_{_B~eP~). dr + P% = 2~p cos ~ ~ + 
dz 

We find the desired functions ~n and r 
equations (14) and (15) n 

(15) 

from the solution of the system of differential 

%d s i n %  z I 3  5 A,~ 
q5 = 2tzp *i  @ P2dZ -d- -}- e-P* Anz -~- 1--6 7 

if- C~ -f- e p* ----~- _ 17 p --~- D,/ 

+ 

(16) 

T n  ---- 2o~ 
p2d2 cos% z ( 3 5 A,~ 1 ) pz/ 3 5 B,~ _ _  

,p _k --d---l- e -p~ ~ A~z 16 p + -  C,, -k e ~---~- B,,z -~ 1---6--p 
I \ 

D~ ). 
2 , 
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Here C n and D_ are arbitrary constants to be determined. We find the coefficients A , B , C 
and D n from t~e boundary conditions, the form of which depends on the method of fixing t~e n 
plate to the base. We consider the case where the plate is fixed securely to a rigid base. 
Then we have the next condition: 

for z = 0 

for z = d 

u : ~ = : 0 .  

Here ~rz, ~zz are components of the stress tensor. 
boundary conditions take the form 

for z = 0 

dq%~ p ~  = 0, 
dz 

for z = d 

Taking into account (10) and (II), the 

2 ~dqon @ pqo,,. = 4r 
dz 

(p,~ : O,~ : 0. Cn) 

From relations (17) and (16), we obtain a system of algebraic equations relative to An, Bn, 

Cn, and Dn: 

3 
-~.-(A,, q- B,,) - -  p (C,~ -1- D,,) --  0, 

3 ( B ~ - - A , ~ ) +  1 x 2 
1---6 9- p ( D . -  C~) = 2ap  2 ,--------~, 

~ 'n  "-V" X" 

A ~ '  3-~-x4 q - T )  e - ~ q -  B ~ (  58 3 e x x Jr- C,~pe -~  + D~pe ~ - -  4r x %  sin % 
4 , ~  + xa ' 

(18) 

4 x - -  8' e -~  + B ~  , + - - 4 - x  -+-C,pe - -  D~pe = - - 4 ~ p  ~ + x  ~ , 

where x = pd. Substituting into relation (16) the coefficients An, B n, Cn, and Dn, found from 

the solution of (18), we obtain the value of ~ and ~ . The transfer components u, w, in ac- 
cordance with (i0) and (ii), depend on ~n and ~_, butnthe stress tensor components are ex- 
pressed in terms of u, w and their first derivatives through the well-known correlation of 
Hooke's law [6]. We reduce the expression for w at z = 0 and also Orz, ~zz for z = d: 

w (r, O, t) --  Iod exp Jo x ~ ?~ F,~ (t) exp ( - -  fA~t) dx, 
2a~ 4ad 2 x z_~ ~2 + x2 

n = l  

e~z(r, d, t ) =  GI-----2-~ exp - - - -  Jo x - y,~ 
a)~ . 4ad z " ~ ] + x Z  

\ n ~  i 

F,~ (l) exp ( - -  ~ l )  dx, 

%~(r, d, t ) =  GIo exp Jx x ~n 
a)~ 4adz , = ~2 _+. xZ 

F,~ (t) exp ( - -  ~#)  dx, 

where 

�9 e - x  M ( ~ - t - x  2) [(B, + x) cos ~,~ - -  xe-Xl ~ xe ~ § [(Bi - -  x) cos ~ + xe ~ 1 + 4 

B,~ - _ _  4opx I (5 x 3eXl 3 } M (q:~ -1- x 2) [(Bi -}- x) cos %~. - -  xe -x] - - 4  e -t- 4 , - -  - - 2  xe -~  [(Bi - -  x) cos ~,~ -{- xe x ] , 
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II - -  - ~ e  - x  . (19) M = :  --~--- x --b -+- "-4-- \ 4 4 

As is well known, the time dependence of the temperature on the reflecting surface of the 
plate under the influence of a pulse-periodic flux is oscillatory [2, 3, 7], while the period 
of the oscillation is equal to A + r. For this reason, the values of w, Ozz , and • also 
oscillate. Figure 1 shows the dependence on Bi of the displacement of the face of the surface 
from the middle of the plate w(0, 0, t), obtained from (19) for the following values: A = 0.5. 
10 -2 sac, T = i0 -a sac, a = 8 cm -2, d = 0.i cm, k : 1 cm2/sec. From analysis of expression 
(7) it follows that in order to heat the plate surface up to a maximum temperature Tm, a cer- 

tain number of pulses of radiation is necessary, satisfying the relation ~![Nmr+ (Nm-- 

I)A]~5 , Hence, for plate thickness d = 0.i cm and Bi = 0.05 (4, = 0.22) the number of puls- 
es needed is N > 200; if Bi = 0.15 (41 = 0.37), then N > 70. In Fig. 2, which is obtained 
from (19), we smhow the dependence of the displacement w~0, 0, t) on the parameter a, which 
characterizes the radial distribution of the intensity of the thermal source (the values of 
A, T, and d as given above). From Fig. 3 it follows that the tensor components of the thermal 
stress ~rz and Ozz have different signs for z = d. This arises from the fact that the stress 
~zz is stretching, but ~rz is compressing. The tensile strength of copper for stretching 
(stretching strength) is several times lower than for compressing (compression strength) and 
measures -20 MPa. As is seen in Fig. 3, for E > 2 J the stress ~ surpasses the tensile 
strength, leading to a breakdown of the plate material or to its separation from the base. 

As a result of deflection from the front surface of the plate, initially the parallel 
beam spreads. For the sake of computing the optical force on the reflecting surface for par- 
axial rays in expression (19) for w(r, 0, t), we expand the Bessel function in a series, re- 
stricted to the quadratic term: 

Then the reflecting surface of the plate represents a paraboloid of rotation r 2 = 2Zz (Z is 
the parameter of the paraboloid); the focal distance is F = Z/2. From (19), taking into ac- 
count (20), we obtain the following relation for the optical force: 

IFI ~ E exp - - - -  x ~ ?n F. (t) exp (-- ~,t) dx. 
2 ~ d ~  o 4ad2 n=l ~ -{- xz 

g c u r ~ e  showing  t h e  d e p e n d e n c e  o f  IF[ -x  on Bi  i s  g i v e n  i n  F i g .  1.  

F't 
IFI Io~ 
s 

2 

14 

--•- . I 0  z~ 

# 

3 

2 

I 

0 
I 

, I , I , I , I 

o q2 #A ei 5 ~ a 

Fig. i Fig. 2 

Fig. I. Dependence of normal travel w(O, 0, t) (cm) (curves 1-3) and optical force 
IF~ -~ (cm-*) (4) on Bi under the effect of N = 25 (1), 50 (2), I00 (3, 4) pulses. 

Fig. 2. Dependence of normal travel w(0, 0, t) (cm) on the parameter a (cm -2) at 
Bi = 0.3 (i) and Bi = 0 (2) (N : i00). 
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-20 

Fig. 3. Dependence of the 
components of thermoelastic 
stresses Ozz (i) and o_. (2) 
(MPa) on the radial coordin- 
ate r (cm) at Bi = 0.05 (N = 
i00). 

The previously derived relation (19)can also be utilized in the case where the beam has 
a central circular shading of radius b [3]. In this case it is necessary to make the substi- 
tution 

e x p  - - - - ,  ~exp - -  e x p ( - - y )  J o  ~ dy 
4ad2 4ad~ o a 

in the integral expressions. This substitution results immediately from the Hankel transform 
of the boundary conditions (2) on the reflecting surface. 

NOTATION 

t, time; r, z, radial and axial coordinates; Io, radiation flux density; k, l, thermal 
diffusivity and thermal conductivity; h, heat-transfer coefficient; Bi = hd/l, Blot number; 
A, time between pulses; r, pulse duration; E = ~IoT/a, pulse energy absorbed by the plate, J; 
~, temperature coefficient of linear expansion; 9, Poisson coefficient; G, shear moduius~ 
Jm(X), Bessel function of the first kind of order m = 0, i. 
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